Synthesis of ¹⁵N-labeled contrast agents for ¹⁵N hyperpolarization by SABRE

Nikita V. Chukanov^{1,2}, Ivan A. Trofimov², Oleg G. Salnikov^{1,2}, Kirill V. Kovtunov^{1,2}, Eduard Y. Chekmenev^{3,4}, and Igor V. Koptyug^{1,2}

¹International Tomography Center SB RAS, Novosibirsk, Russia

²Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia

³Department of Chemistry, Integrative Biosciences, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA

⁴Russian Academy of Sciences, Moscow, Russia

O CH₃CHO
$$\frac{15}{15} \frac{15}{15} \frac{$$

Metronidazole is an antibiotic that can be safely administered orally and intravenously in large doses. ¹⁵N polarizations of up to 34% were obtained for this compound at natural abundance of ¹⁵N nuclei using SABRE. Therefore, we developed a synthetic approach for [¹⁵N₃]metronidazole using ¹⁵NH₄Cl and Na¹⁵NO₃ as the ¹⁵N source. The overall yield over three steps was around 15%.

Nimorazole is a nitroimidazole-based anti-infective which is also being investigated as a radiosensitizing agent for the treatment of head and neck cancer. Therefore, we performed the synthesis of isotopically labeled [\$^{15}N_3\$]nimorazole. In the first step, [\$^{15}N_2\$]imidazole was prepared with 50–60% yield via condensation of glyoxal, formaldehyde and \$^{15}NH_4Cl\$ used as a source of \$^{15}N\$ isotope enrichment. Subsequent nitration with H\$^{15}NO_3\$/H_2SO_4\$ allowed to obtain [\$^{15}N_3\$]4(5)-nitroimidazole with 30% yield. Next, this compound was alkylated with 4-(2-chloroethyl)morpholine in the presence of K_2CO_3 forming [\$^{15}N_3\$]nimorazole and its isomer in a 1:3 ratio.

4-Aminopyridine is used as a research tool in characterizing subtypes of the potassium channels. It has also been employed as a drug managing some of the symptoms of multiple sclerosis. 4-Aminopyridine was efficiently hyperpolarized by SABRE with ~8% ¹⁵N polarization at natural abundance of ¹⁵N nuclei. We synthesized [¹⁵N]4-aminopyridine using ¹⁵NH₄Cl at the first step to obtain [¹⁵N]pyridine which was then converted into the product through the three steps.

ACKNOWLEDGMENTS: This work was supported by the Russian Science Foundation (grant #17-73- 20030), NSF CHE-1904780 and NIH 1R21CA220137.

¹Shchepin, R. V.; et al., Hyperpolarizing Concentrated Metronidazole (NO2)-N-15 Group over Six Chemical Bonds with More than 15 % Polarization and a 20 Minute Lifetime, Chem. Eur. J., 2019, 8829-8836

²Birchall J. R.; et al., Quantifying the Effects of Quadrupolar Sink via ¹⁵N Relaxation Dynamics in Metronidazoles Hyperpolarized via SABRE-SHEATH, Chem. Comm., 2020, under review

³Salnikov O. G.; et al., ¹⁵N NMR Hyperpolarization of Radiosensitizing Antibiotic Nimorazole via Reversible Parahydrogen Exchange in Microtesla Magnetic Fields, Angew. Chem. Int. Ed., 2020, under review.

⁴Salnikov O. G.; et al., manuscript in preparation.