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Parahydrogen Induced Polarization (PHIP) is a simple and fast hyperpolarization approach, which holds the 

key to revolutionizing clinical production of HP contrast agents. Parahydrogen (p-H2) is employed as a source 
of polarization by both hydrogenative PHIP and its non-hydrogenative variant (SABRE) allowing 
hyperpolarization of a wide range of biologically relevant compounds. In those cases, p-H2-derived polarization 
is often transferred to other spin-1/2 nuclei including 13C, 15N, 1H, 31P, 19F, and others reaching nuclear spin 
polarization (P) of >50% in some cases. Therefore, we report on robust and inexpensive design of liquid N2-
based p-H2 generator (o-p catalyst-filled copper tubing spiral, Fig. 1a) for operation at up to 35 atm (1). The 
produced exiting p-H2 gas is quantified by ‘real-time’ NMR spectroscopy using bench-top 1.4 T NMR 
spectrometer. The design reproducibility has been evaluated with N=3 devices. Moreover, we investigated 
ortho-para catalyst activation using exposure to high temperature to achieve production rate of 1,000 sccm 
with ~48% p-H2 fraction (Fig. 1b, 1). We anticipate the 
reported design can be employed for p-H2 production at 
higher flow rates of up to 4,000 sccm (2). The utility of the 
reported device was further evaluated for SABRE-SHEATH 
hyperpolarization of concentrated sodium [1-13C]pyruvate, a 
metabolic contrast agent under investigation in numerous 
clinical trials. The study yielded 13C signal enhancement of 
over 14,000-fold (Fig. 1c) at clinical relevant magnetic field 
of 1 T corresponding to approximately 1.2% 13C polarization 
– if near 100% parahydrogen would have been employed, 
the reported value would be tripled to 13C polarization of 
3.5% (1). 
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Figure 1. a) Annotated photo of p-H2 generator for 
operation in liquid N2 bath (77 K); b) Parahydrogen 
quantification using 1.4 T bench-top NMR 
spectrometer using 8 atm gas samples: 1024 scans, 
SW=5 kHz, tacq=52 ms, ∼102 s experimental time; c) 
NMR spectrum of SABRE-SHEATH hyperpolarized 
sodium [1-13C]pyruvate yielding 13C signal 
enhancement >14,000-fold at 1 T corresponding to 
approximately 1.2% 13C polarization.  
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Our long-term goal is to develop proton-hyperpolarized (HP) propane as inhalable contrast agent 
for ultrafast pulmonary imaging. In this work, we study the feasibility of HP propane production at 
physiologically relevant condition of 1 atm total pressure via heterogeneous parahydrogen addition to 
propylene substrate (Figure 1a) using fast pseudo 2D signal acquisition method and 1.4 T bench-top 
NMR spectrometer (Nanalysis NMR Pro60), Figure 1b, and 87% parahydrogen generator. 

The effect of the 
gas flow of the mixture 
of propylene and 
parahydrogen was 
studied over a wide 
range of flow rates from 
620 standard cubic 
centimeters (sccm) – 
8800 sccm using a gas 
phase heterogeneous 
hydrogenation reaction 
carried out at outer 
reactor temperature of 
100 °C. We observe 

substantial 
dependence of proton 
signal enhancement 
(SE) of Ha and Hb 
protons on the gas flow 
rate, Figure 1c, with SE 
increasing at higher 
flow rates. 
 

Figure 1. a) PHIP reaction to produce HP propane via heterogeneous hydrogenation. b) Pseudo 2D acquisition of HP 
propane signal. c) and d) HP propane signal enhancement dependence on gas flow rate and flow duration respectively. 
 

HP propane SE dependence on total reactor pressure was studied with respect to different reactor 
pressure values for a 1:1 gas mixture of propylene and parahydrogen. However, reactor pressure does 
not seem to have a significant effect in the range of the pressure values studied in this work, Figure 1d. 
A detailed study of pressure dependence for variable gas compositions will be presented. These 
findings bode well for developing disposable clinical-scale hyperpolarizer operating at 1 atm 
(physiological condition). 
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In PHIP and SABRE, parahydrogen (p-H2) is used as the source of spin 

order to achieve hyperpolarization (1).  A frequent byproduct is the spin-

isomer orthohydrogen (o-H2). In SABRE (2), where substrate 

hyperpolarization is achieved under conditions of reversible exchange, 

the transfer of spin order from p-H2 can give rise to hyperpolarized o-H2 

(3).  The increased 1H T1 from the gas-phase millisecond regime to 2-3 

s in solution allows significant polarization—particularly with p-H2 

bubbling and high-field acquisition (e.g. ~100-fold enhancement at 9.4 

T) (3).  In such cases, the hyperpolarized o-H2 signal is usually 

absorptive (compared to the typically emissive phase of 1H SABRE).  

However, when PHIP is manifested by irreversible hydrogenation, the 

p-H2 is consumed in the reaction—often preventing HP o-H2 formation. 

Exceptions generally require some process whereby molecular H2 is 

regenerated (e.g. PHIP insertion/elimination (4)). Of particular interest 

are cases where the the signals from HP o-H2 are antiphase (5,6); such 

an observation is paradoxical, because the two transitions within the 

triplet manifold should cancel. This “partial negative line” effect was 

recently explained in the context of PHIP by the late Konstantin Ivanov 

(6), who noted that binding of H2 with the Rh catalyst causes the two H 

spins to become non-equivalent, leading them to precess at different 

frequencies and giving rise to free o-H2 enriched in the T0 state; 

exchange gives rise to residual shifts for the two tranitions, yielding a 

significant antiphase signal.   

Here we describe a novel manifestation of this effect using a 

heterogeneous SABRE catalyst constructed in a metal-organic 

framework (MOF).  Large antiphase o-H2 signals are observed, with 1H 

enhancements exceeding 1000-fold (PH>3%).  Moreover, the lifetime of 

the HP o-H2 state is extended by ~4-5-fold compared to the 

homogeneous case (3).  Finally, we report on efforts to perform HET-

SABRE-SHEATH (7) with this novel MOF catalyst.  
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Figure 1: Parahydrogen-enhanced spectrum (1 

scan, bottom) compared to a corresponding 

thermal spectrum (100 scans, scaled 100 times, 

top). Bottom spectrum was obtained after 30 s 

pH2 bubbling at ~65 gauss and trapid manual 

transport of the sample to high field (9.4 T). 
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The nuclear magnetic resonance (NMR) chemical shift 
is a great property of molecular structure. NMR has 
been employed for the characterization of molecules, 
and it ultimately helps to create magnetic resonance 
images. Moreover, it enables spectroscopic imaging via 
monitoring the metabolic transformation of 
hyperpolarized contrast agents. The NMR chemical 
shift also can be determined by ab initio calculation. We 
have used Density-Functional Theory (DFT) and 
Gaussian’09 software for our calculation of 15N NMR 
chemical shifts in aqueous media. Ground-state DFT 
calculations have been performed to determine the on 
a series of metabolites (nitroso-, hydroxylamino- and 
amino-) of [15N3]metronidazole, [15N3]nimorazole, 
[15N3]ornidazole, [15N3]secnidazole, [15N3]benznidazole, 
and [15N3]evofosfamide for screening of the sensitivity 
of 15N chemical shifts sites to metabolic reduction 
process, e.g., due to hypoxia. 15N chemical shifts of the 
drugs and their metabolites were obtained after the 
three-level geometry optimization with STO-3G, 3-21G, 
and 6-311++g(d,p) basis sets. The NMR chemical shift 
tensors of optimized structures were calculated by a 
single-point GIAO method using the correction 

consistent aug-cc-pVDZ Dunning basis set. While all compounds exhibited a clear sensitivity trend to the 
reduction process for all three 15N sites, i.e., their 15N chemical shifts can clearly provide sensitive mechanism 
for 15N hypoxia sensing, [15N3]metronidazole was deemed the optimum choice in the context of hypoxia sensing. 
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Figure 1. Results summary of ab initio calculations of 15N 
NMR chemical shifts of [15N3]metronidazole and its 
metabolites from Gaussian’09. 

https://doi.org/10.1002/mrc.5144.
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NMR and MRI are indispensable tools that work without the use of ionizing radiation and have an 

unparalleled ability to elucidate morphological and chemical structure. These techniques have untapped 
potential as the absolute sensitivity is very small due to low thermal polarization of spin states. 
Hyperpolarization methods are employed to increase sensitivity. Signal amplification by reversible 
exchange (SABRE)[1] is a parahydrogen based method that generates high levels of polarization[2][3] on 
substrates without chemical modifications directly in room temperature liquids. These features make 
SABRE a promising technique for future 
biological studies, including hyperpolarized MR 
contrast agents for in vivo sensing at 
physiological concentrations. Nitrogen-15 
contrast agents are of growing interest because 
they do not compete with strong proton 
background and because they tend to have 
longer hyperpolarization lifetimes.[4][5] 

In this study, we extend the biologically 
relevant SABRE substrate scope by 
hyperpolarizing both 1H and 15N nuclei on two 
common cancer drugs, anastrozole and letrozole 
illustrated in Fig. 1. Specifically, we conduct polarization transfer field sweeps (Fig. 2 for 15N field sweeps), 
temperature sweeps and hyperpolarization lifetime studies for both drugs.  

For 15N nuclei on the nitrile substituents, we found that polarization transfer efficiency increases in 
a linear fashion with an increase in temperature 
from 25°C to 50°C and that the optimum 
polarization transfer field is ~0.3µT. We plan on 
extending the high field (9.4T) hyperpolarization 
lifetime on 15N nuclei (~20 seconds for both 
drugs) by storing the sample at lower field 
strengths, e.g., 1T and EMF. 1H polarization 
transfer efficiency is maximized at lower 
temperatures (~40°C) compared to 15N nuclei 
and the optimum polarization transfer field is 
~6mT. 

These optimization studies shed light on 
complex SABRE dynamics and bring 

mechanistic insights into the hyperpolarization process. In conclusion, this study broadens the SABRE 
substrate scope and furthers the fields direction towards highly sensitive MR contrast agents. 
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Figure 1. Chemical structure of the target substrates, anastrozole and 
letrozole. Nitrogen atoms highlighted green are the hyperpolarized 
nuclei in Figure 2.  

Figure 2. 15N polarization transfer field sweep of anastrozole and 
letrozole. Hyperpolarized nulcei are highlighted green in Figure 1. 
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Hyperpolarized metabolites (HMs) can 
facilitate kinetic studies of metabolic 
processes as biomarkers for disease 
detection and monitoring via PHIP Side Arm 
Hydrogenation (PHIP-SAH).1,2 Typically, 
liquid phase PHIP experiments are 
performed by bubbling parahydrogen 
through a solution containing a dissolved 
rhodium catalyst and the side-arm 
precursor. The reaction rate, 
hyperpolarization levels, and polarization 
yields achieved by the conventional 
bubbling method are limited by the 
molecular transport and mixing process as 
well as spin-lattice relaxation losses. Spray 
injection systems have been shown to be 
more efficient than bubbling for the fast 
production of bulk hyperpolarized 
substrates that is well-suited to in-vivo 
applications.3 Spray injection can deliver the 
required quantities of highly hyperpolarized 
metabolites. We will present details on the 
instrumentation, operating conditions, and PHIP performance for a novel mixing process that can 
provide controlled and repeatable HM production. Exemplary PHIP spectra for the hydrogenation 
of propargyl acetate with parahydrogen using this new reactor system are presented in Figure 1. 
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Supported Pt nanoparticles (NPs) are widely used 
in parahydrogen enhanced NMR. However, the 
stepwise transfer and fast diffusion of H atoms on 
the Pt surface significantly limit the pairwise 
addition in the hydrogenation reaction. Significant 
improvements can be made on pairwise selectivity 
through the rational design of heterogeneous 
catalysts. In 2016, a facile approach was developed 
to synthesize mesoporous silica (mSiO2) 
encapsulated Pt-Sn intermetallic nanoparticles 
(iNPs), where the silica shell provides the catalyst 
with high-temperature stability up to 750 ℃.[1] In the 
present study, parahydrogen enhanced NMR in the 
hydrogenation of propyne, propene, and 
cyclopropane will be presented using these three 
Pt-Sn@mSiO2 iNPs. A significant difference in 
pairwise selectivity was observed among three 
catalysts and PtSn@mSiO2 iNPs delivered >1000-
fold NMR signal enhancements in the 

hydrogenation product: propene and propane.[2,3] The difference of performance was attributed to 
the elimination of 3-fold Pt hollow sites on the catalyst surface, thereby restricting the dissociative 
H2 chemisorption and H diffusion across the surface sites. The hyperpolarized gases achieved by 
parahydrogen enhanced NMR over PtSn@mSiO2 iNPs have many potential applications, ranging 
from mechanistic probing of chemical processes to real-time pulmonary imaging. 
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Figure 1: Signal enhancement of propene 

and propane by parahydrogen enhanced 

NMR over Pt-Sn@mSiO2 nanoparticles 



 
Figure 1. a) Structure of sodium [1-13C]pyruvate employed for the studies of the following SABRE-SHEATH composition: 20 
mM DMSO, 30 mM [1-13C]pyruvate, 6 mM IrIMes pre-catalyst in 0.6 mL CD3OD, 7.7 atm pH2 pressure. b) Magnetic field 
sweep. c) 13C polarization build-up at 0.3 µT. d) 13C T1 decay at 0.3 µT. e) 13C T1 decay at the Earth’s magnetic field. f) 13C T1 
decay at 1.4 T. g) P13C dependence on flow rate. h) P13C dependence on temperature. 
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NMR signal enhancement through hyperpolarization 
improves the diagnosis and treatment of medical 
conditions such as cancer. [1-13C]pyruvate is the 
leading hyperpolarized contrast agent, which in under 
investigation in many clinical trials and studies. Signal 
Amplification by Reversible Exchange (SABRE) in 
shield enables alignment transfer to heteronuclei 
(SABRE-SHEATH) including 13C. This approach can 
give rise to strong 13C signals through simultaneous 
chemical exchange of parahydrogen and to-be-
hyperpolarized substrate (e.g., to-be hyperpolarized 
contrast agent). In 2020, Duckett and co-workers have 
demonstrated that [1-13C]pyruvate can be 
hyperpolarized via SABRE-SHEATH. Here, we 
demonstrate how 13C signal enhancement of [1-
13C]pyruvate, an important metabolic compound, can 
be optimized using SABRE-SHEATH technique via 
signal readout using a benchtop 1.4 T 13C NMR 
spectrometer. By hyperpolarizing [1-13C]pyruvate via an 
Iridium based transfer catalyst [Ir(H)2(η2-
pyruvate)(DMSO)(IMes)] and pilot optimization of 
experimental parameters (Figure 1), P13C of ~5% was 
achieved corresponding to 13C signal enhancement by 
~40,000-fold. We expect that further optimization of 
experimental parameters space will allow improving the 
level of polarization beyond 20%. When combined with 
other recent advances including catalyst purification, 
these findings bode well for future in vivo and clinical 
translation. 
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PHIP and SABRE are attractive hyperpolarization 

methods because they are fast, cheap, scalable, and have 

relatively modest instrumentation/infrastructure 

requirements (1).  The reversibility of SABRE (2) also 

enables systematic experimental repetition over 

considerable periods of time, facilitating optimization--a 

feature that is particularly important when using labeled 

compounds or exploring multi-dimensional parameter 

spaces.  On the other hand, PHIP-SAH (3,4) has 

successfully demonstrated high polarizations in 13C spins 

in biologically relevant molecules, but the irreversibility of 

substrate hydrogenation presents a challenge towards 

technique development, particulary given the significant 

expense of 13C-labeled compounds (relative to 15N).   

Here we are investigating the use of unlabeled (naturally 

abundant 13C) molecules and both high-field and 

benchtop NMR spectrometers for optimizing protocols for 

hyperpolarization and catalyst removal for PHIP-SAH 

agents. In one set of experiments, a commercial Rh 

(Wilkinson’s) catalyst and PHIP with magnetic field cycling (MFC) was used to obtain ~1000-fold 13C signal enhancement 

at 9.4 T when converting vinyl acetate to ethyl acetate; given a 25% reaction yield, this corresponds to a ~4000-fold 

enhancement in polarization for the product (or ~3.2%).  In another set of experiments, a benchtop NMR setup was used, 

and P13C=10% was achieved in the same system; in both cases the naturally abundant signal is sufficently strong for 

relaxation studies to be performed, obviating the need for 13C enrichment.  In other experiments, commercial surface-

functionalized silica particles (5) were used to rapidly sequester the catalyst; doing so rapidly quenched any observable 1H 

PHIP in both the original solution and the supernatant.  SEM-EDX shows successful uptake of the Rh catalyst by the 

functionalized silica particles. The approach should be amenable to systematic mapping of parameter space and 

comparison of different approaches for PHIP catalyst removal (5-9).   
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Figure 1: (bottom) Natural abundance (~1%) 13C spectrum of 

HP ethyl-acetate, achieved after 15 s of p-H2 bubbling at earth’s 

field and 45 C. After bubbling, the sample was place in a 

magnetic shield and removed (~3 s); then, subsequent transfer 

to 9.4 T (Vinyl-acetate: 80 mM; Rhodium catalyst, 5 mM). 


