Zero- to ultra-low field NMR spectroscopy of azobenzene hyperpolarized by SABRE

Kirill Sheberstov¹, Vitaly Kozinenko^{2,3}, John W. Blanchard¹, Konstantin Ivanov^{2,3}, Alexey Kiryutin^{2,3}, Hans-Martin Vieth^{2,4}, Herbert Zimmermann⁵, Dmitry Budker^{1,6}, Alexandra Yurkovskaya^{2,3}

- 1. Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55128 Mainz, Germany 2. International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia 3. Novosibirsk State University, Novosibirsk, 630090, Russia

Photochromic properties of azobezene

cis-ABZ

hν(400-450 nm) hv' (320-400 nm)

- Azobenzene (ABZ) can be reversibly photo-switched
- trans-ABZ exhibits long-lived states (LLS) of nuclear spins
- *cis*-ABZ can be effieciently hyperpolarzied by SABRE
- We are developing experimental protocol to combine SABRE, photo-switching and storage of hyperpolarization in LLS

Signal amplification by reversible exchange

- Reversible formation of the complex enables to repeat hyperpolarization for many times
- J-coupling constants were determined from ¹⁵N and ¹H SABRE spectra acquired at 5 °C

- SABRE SHEATH (Shield Enables Alignment Transfer to Heteronuclei) enables transfer of p-H₂ singlet order to ¹⁵N magnetization in zero- to ultra-low fields (ZULF)

Long T₁ relaxation time of the ¹⁵N spins in *trans*-ABZ (~2 min) at the optimal magnetic field for SABRE SHEATH experiment (5*10⁻⁷ T) will facilitate transfer of the hyperpolarzation to *trans*-ABZ by photo-switching of the hyperpolarized *cis*-ABZ

ZULF NMR is a perspective approach for in situ observation of this process

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 766402.

HIM HELMHOLTZ Helmholtz-Institut Mainz

trans-ABZ

$B_0 = 16.4 T$

Outlook

4. Freie Universitat Berlin, Berlin, 14195, Germany 5. Department of Biomolecular Mechanisms, Max-Planck-Institut für Medizinische Forschung, 69120 Heidelberg, Germany 6. Department of Physics, University of California, Berkeley, California 94720-300, USA